Topologically certified approximation of umbilics and ridges on polynomial parametric surface

نویسندگان

  • Frédéric Cazals
  • Fabrice Rouillier
  • Jean-Charles Faugère
  • Marc Pouget
چکیده

Given a smooth surface, a blue (red) ridge is a curve along which the maximum (minimum) principal curvature has an extremum along its curvature line. Ridges are curves of extremal curvature and encode important informations used in surface analysis or segmentation. But reporting the ridges of a surface requires manipulating third and fourth order derivatives —whence numerical difficulties. Additionally, ridges have self-intersections and complex interactions with the umbilics of the surface —whence topological difficulties. In this context, we make two contributions for the computation of ridges of polynomial parametric surfaces. First, by instantiating to the polynomial setting a global structure theorem of ridge curves proved in a companion paper, we develop the first certified algorithm to produce a topological approximation of the curve P encoding all the ridges of the surface. The algorithm exploits the singular structure of P —umbilics and purple points, and reduces the problem to solving zero dimensional systems using Gröbner basis. Second, for cases where the zero-dimensional systems cannot be practically solved, we develop a certified plot algorithm at any fixed resolution. These contributions are respectively illustrated for Bezier surfaces of degree four and five. Key-words: Ridges, Differential Geometry, Computer Algebra. ∗ INRIA Sophia-Antipolis, Geometrica project † INRIA Rocquencourt, Salsa project ‡ INRIA Sophia-Antipolis, Geometrica project § INRIA Rocquencourt, Salsa project Approximation certifiée des ombilics et des ridges d’une surface parametrée polynomiale Résumé : Étant donnée une surface lisse, un ridge bleu (rouge) est une courbe le long de laquelle la courbure principale maximum (minimum) a un extremum en suivant sa ligne de courbure. Les ridges sont des lignes d’extrêmes de courbure et codent des informations importantes utilisées en segmentation, recalage, comparaison et analyse de surfaces. Cependant, reporter les ridges d’une surface nécessite l’évaluation de dérivées d’ordre trois et quatre —d’où des difficultés numériques. De plus, les ridges s’auto-intersectent et interagissent de façon complexe avec les ombilics de la surface —d’où des difficultés de nature topologique. Dans ce contexte, ce papier propose deux contributions. D’une part, en instantiant pour les surfaces paramétrées de façon polynomiale un théorème de structure globale des ridges établi dans un papier joint, nous développons un algorithme produisant une approximation certifiée de la courbe P codant les ridges de la surface. Cet algorithme exploite la structure singulière de P , et repose sur la résolution de systèmes zéro dimensionnels. D’autre part, pour les cas où les systèmes zéro dimensionnels ne peuvent être effectivement résolus, nous développons un algorithme de tracé certifié à une résolution donné. Ces deux algorithmes sont illustrés sur des surfaces de Bézier de degrés quatre et cinq respectivement. Mots-clés : Ridges et Extrêmes de courbure, Géométrie Différentielle, Calcul algébrique. Certified approximation of umbilics and ridges 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ridges and umbilics of polynomial parametric surfaces

Given a smooth surface, a blue (red) ridge is a curve along which the maximum (minimum) principal curvature has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore encode important informations used in segmentation, registration, matching and surface analysis. State of the art methods for ridge extraction either report red and blue ridges simultaneously o...

متن کامل

ACS Algorithms for Complex Shapes with Certified Numerics and Topology Definitions of discrete versions of ridges

Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore encode important informations used in segmentation, registration, matching and surface analysis. Surprisingly, no method developed so far to report ridges from a mesh approximating a smooth surface comes with a car...

متن کامل

ACS Algorithms for Complex Shapes with Certified Numerics and Topology Ridges 3 : Approximation of Ridges and Umbilics on Triangulated Surface Meshes

This paper describes the CGAL package for the approximating the ridges and umbilics of a smooth surface discretized by a triangle mesh. Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. An umbilic is a point at which both principal curvatures are equal. Ridges define a singular curve —i.e. a self-intersecting curve, ...

متن کامل

Topology driven algorithms for ridge extraction on meshes

Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore encode important informations used in segmentation, registration, matching and surface analysis. Surprisingly, no method developed so far to report ridges from a mesh approximating a smooth surface comes with a car...

متن کامل

The implicit structure of ridges of a smooth parametric surface

Given a smooth surface, a blue (red) ridge is a curve such that at each of its points, the maximum (minimum) principal curvature has an extremum along its curvature line. Ridges are curves of extremal curvature and therefore encode important informations used in segmentation, registration, matching and surface analysis. State of the art methods for ridge extraction either report red and blue ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005